

Journal of Organometallic Chemistry 495 (1995) 135-140



# Lewis-Basen Addukte monomerer Bis( $\eta^2$ -alkin) Ag<sup>I</sup>X-Verbindungen (X = BF<sub>4</sub> oder OSO<sub>2</sub>CF<sub>3</sub>)

Heinrich Lang \*, Katrin Köhler, Berthold Schiemenz

Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Deutschland

Eingegangen am den 29. November 1994

#### Abstract

The reaction of the organometallic 1,4-diyne  $Me_3SiC \equiv C-[Ti]-C \equiv CSiMe_3$  ( $[Ti] = (\eta^5 - C_5H_4SiMe_3)_2Ti$ ) (1) with  $[AgX]_n$  (X = BF<sub>4</sub> (2a) or  $OSO_2CF_3$  (2b)) affords { $(\eta^5 - C_5H_4SiMe_3)_2Ti(C \equiv CSiMe_3)_2$ }AgX (X = BF<sub>4</sub> (3a) or  $OSO_2CF_3$  (3b)) with 85% yield. The  $(\eta^2 - C \equiv CSiMe_3)_2$ AgX building block in 3 represents a 16-electron complex fragment and the silver atom has a trigonal planar geometry.

The reaction of 3 with Lewis bases L leads to the formation of  $\{(\eta^5-C_5H_4SiMe_3)_2Ti(C\equiv CSiMe_3)_2\}Ag[(X)(L)]$  (L = THF; X = BF<sub>4</sub> (4), (L = P(C\equiv CPh)\_2(CH\_2Ph); X = OSO\_2CF\_3 (5a)) (L = PPh\_3; X = OSO\_2CF\_3 (5b)) (L = P(OMe)\_3; X = OSO\_2CF\_3 (5c)) (L = N \equiv CMe, X = BF\_4 (6a)) (L = N = CPh; X = BF<sub>4</sub> (6b)) (L = N = CPh; X = OSO\_2CF\_3 (6c)); with fumarodinitril [{[( $\eta^5-C_5H_4SiMe_3)_2Ti(C\equiv CSiMe_3)_2]Ag]_2(N \equiv C-CH = CH - C \equiv N)](OSO_2CF_3)_2 (7)$  is formed. While 4-6 are 1:1 adducts of 3 and L, 7 has a 2:1 composition of 3 and N = C-CH = CH - C = N. The ( $\eta^2-C \equiv CSiMe_3)_2Ag[(X)(L)$ ] building blocks in 4-7 have an 18-electron count and the silver(I) coordination is pseudotetrahedral.

All synthesized compounds have been characterized by analytical and spectroscopic data (IR, <sup>1</sup>H, <sup>13</sup>C and <sup>31</sup>P NMR and mass spectroscopy), and  $\{(\eta^5 - C_5H_4SiMe_3)_2Ti (C=CSiMe_3)_2\}Ag[(BF_4)(THF)]$  (4) by X-ray analysis.

### Zusammenfassung

Die Reaktion des metallorganischen 1,4-Diins Me<sub>3</sub>SiC $\equiv$ C-[Ti]-C $\equiv$ CSiMe<sub>3</sub> ([Ti] = ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>2</sub>Ti) (1) mit [AgX]<sub>n</sub> (X = BF<sub>4</sub> (2a) oder OSO<sub>2</sub>CF<sub>3</sub> (2b)) ergibt [( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>2</sub>Ti(C $\equiv$ CSiMe<sub>3</sub>)<sub>2</sub>}AgX (X = BF<sub>4</sub> (3a) oder OSO<sub>2</sub>CF<sub>3</sub> (3b)) in 85% Ausbeute. In 3 entspricht das ( $\eta^2$ -C $\equiv$ CSiMe<sub>3</sub>)<sub>2</sub>AgX-Fragment einem 16-Elektronen Metallkomplex-Baustein und das Silber-Atom weist eine trigonal-planare Umgebung auf.

Bringt man 3 mit Lewis-Basen L zur Reaktion, so bildet sich { $(\eta^5-C_5H_4SiMe_3)_2Ti$  (C=CSiMe<sub>3</sub>)<sub>2</sub>}Ag[(X)(L)] (L = THF; X = BF<sub>4</sub> (4)) (L = P(C=CPh)<sub>2</sub>(CH<sub>2</sub>Ph); X = OSO<sub>2</sub>CF<sub>3</sub>, (5a)) (L = PPh<sub>3</sub>; X = OSO<sub>2</sub>CF<sub>3</sub> (5b)) (L = P(OMe)<sub>3</sub>; X = OSO<sub>2</sub>CF<sub>3</sub>; (5c)) (L = N=CMe; X = BF<sub>4</sub> (6a)) (L = N=CPh; X = BF<sub>4</sub> (6b)) (L = N=CPh; X = OSO<sub>2</sub>CF<sub>3</sub> (6c)); mit Fumarsäuredinitril wird [{[ $(\eta^5-C_5H_4SiMe_3)_2Ti$  (C=CSiMe<sub>3</sub>)<sub>2</sub>]Ag]<sub>2</sub>(N=C-CH=CH-C=N){(OSO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub> (7) erhalten. Während 4-6 1:1 Addukte von 3 und L repräsentieren, weist 7 eine 2:1 Zusammensetzung von 3 und N=C-CH=CH-C=N auf und die ( $\eta^2$ -C=CSiMe<sub>3</sub>)<sub>2</sub>Ag[(X)(L)]-Bausteine entsprechen 18-Elektronen Komplexfragmenten mit einem pseudo-tetraedrisch koordinierten Silber (I)-Zentrum.

Alle Verbindungen wurden elementaranalytisch und spektroskopisch (IR, <sup>1</sup>H-, <sup>13</sup>C- und <sup>31</sup>P-NMR und Massenspektroskopie) charakterisiert; von {( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>2</sub>Ti(C=CSiMe<sub>3</sub>)<sub>2</sub>}Ag[(BF<sub>4</sub>)(THF)] (4) wurde eine Röntgenstrukturanalyse angefertigt.

Keywords: Lewis base adducts; Silver; Alkyne; X-ray structure

## 1. Einleitung

Im Rahmen unserer Untersuchungen zur Darstellung und zum Reaktionsverhalten monomerer Kupfer(I)- Verbindungen haben wir vor kurzem über die Umsetzung von  $\{(\eta^5-C_5H_4SiMe_3)_2Ti(C \equiv CSiMe_3)_2\}Cu-(OSO_2CF_3)$  (Typ A Molekül) mit organischen Nucleophilen und Lewis-Basen L berichtet [1,2].

Während die Umsetzung von A mit organischen Nucleophilen  $R^-$  (R = einbindiger organischer Rest) zu Verbindungen vom Typ **B** führt, wird mit den Zweielek-

<sup>\*</sup> Corresponding author.

<sup>0022-328</sup>X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05434-0

tronen Donatoren L ( $L = N \equiv CMe$  oder  $N \equiv CPh$ ) eine Verdrängung des OSO<sub>2</sub>CF<sub>3</sub>-Restes in A unter Bildung der kationischen Komplexe vom Typ C beobachtet [2]:



In den Komplexen vom Typ A-C besitzen die Kupfer-Atome eine trigonal-planare Umgebung und der  $(\eta^2 - C \equiv CSiMe_3)_2$ Cu-Baustein stellt ein 16-Elektronen Komplexfragment dar.

Wir beschreiben hier die Darstellung von  $\{(\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}Ti(C=CSiMe_{3})_{2}\}AgX (X = OSO_{2}CF_{3}$ oder BF<sub>4</sub>) (Typ A Molekül) und dessen Umsetzung mit Lewis-Basen L unter Bildung der Addukte  $\{\eta^{5}-C_{5}H_{4}SiMe_{3})_{2}Ti (C=CSiMe_{3})_{2}\}Ag[(X)(L)].$ 

### 2. Ergebnisse und Diskussion

2.1. Darstellung von  $\{(\eta^5 - C_5 H_4 SiMe_3)_2 Ti(C \equiv CSi-Me_3)_2\}AgX (X = BF_4 oder OSO_2CF_3)$ 

Bei der Umsetzung des metallorganischen 1,4-Diins  $Me_3SiC \equiv C-[Ti]-C \equiv CSiMe_3$  ([Ti] =  $(\eta^5 - C_5H_4Si-Me_3)_2Ti$ ) (1) mit [AgX]<sub>n</sub> (X = BF<sub>4</sub> (2a) oder OSO<sub>2</sub>CF<sub>3</sub> (2b) [2]) wird in Et<sub>2</sub>O bei 25°C die polymere Struktur der Silber(I)-Verbindungen 2a und 2b aufgebrochen und in monomere AgX-Bausteine (3) überführt; die Ausbeute beträgt 85%:



Die Komplexe **3a** und **3b** zersetzen sich sowohl im Festkörper, als auch in Lösung unter Luftzutritt nicht merklich. Sie lösen sich in Tetrahydrofuran (THF) und Aceton mit oranger Farbe; in *n*-Pentan beziehungsweise Toluol sind sie unlöslich. Zur Reinigung von **3a** und **3b** genügt es, die erhaltenen Rohprodukte mit *n*-Pentan zu waschen.

#### 2.2. Reaktionsverhalten

# 2.2.1. Umsetzung von 3 mit Tetrahydrofuran

Die Verbindung **3a** reagiert mit THF bei 25°C zu dem braunen Adduktkomplex  $\{(\eta^5-C_5H_4SiMe_3)_2Ti$  $(C=CSiMe_3)_2\}Ag[(BF_4)(THF)]$  (4):



Die Lewis-Base THF läßt sich im Ölpumpenvakuum wieder entfernen. Ähnliche Beobachtungen werden auch mit NEt<sub>3</sub> gemacht. { $(\eta^5-C_5H_4SiMe_3)_2Ti(C\equiv CSi-Me_3)_2$ }Ag[(BF<sub>4</sub>)(NEt<sub>3</sub>)] ist jedoch für eine Isolierung nicht ausreichend stabil; 4 läßt sich dagegen durch Kristallisation aus THF-Lösungen bei  $-30^{\circ}C$  in Form von Einkristallen erhalten [3].

## 2.2.2. Umsetzung von 3 mit Phosphanen und Nitrilen

Nachdem mit den schwachen Lewis-Basen THF und  $NEt_3$  reversible Addukt-Bildung ( $3a \leftrightarrow 4$ ) beobachtet wurde, sollte es möglich sein, mit Lewis-Basen, die ein besseres Donor-Akzeptor-Verhältnis als THF bzw.  $NEt_3$  aufweisen, stabilere Addukte herzustellen.

Mit den Lewis-Basen  $PR_2R'$  ( $R = C \equiv CPh$ ;  $R' = CH_2Ph$ ) (R = R' = Ph) (R = R' = OMe) bzw.  $N \equiv CR$ (R = Me, oder Ph) entstehen in THF bei 25°C die Verbindungen { $(\eta^5-C_5H_4SiMe_3)_2Ti$  ( $C \equiv CSiMe_3)_2$ }Ag-[(X)(L)] ( $L = PR_2R'$  (5) oder  $N \equiv CR$  (6)) in quantitativer Ausbeute (Tabelle 1):



| Tabelle 1    |   |     |   |
|--------------|---|-----|---|
| Verbindungen | 5 | und | 6 |

| Verbindung | L                           | X                                                                                  |  |
|------------|-----------------------------|------------------------------------------------------------------------------------|--|
| 5a         | $P(C \equiv CPh)_2(CH_2Ph)$ | $h_2(CH_2Ph)$ OSO <sub>2</sub> CF <sub>3</sub><br>OSO <sub>2</sub> CF <sub>3</sub> |  |
| 5b         | PPh <sub>3</sub>            |                                                                                    |  |
| 5c         | $P(OMe)_3$                  | OSO <sub>2</sub> CF <sub>3</sub>                                                   |  |
| 6a         | N≡CMe                       | $BF_4$                                                                             |  |
| 6b         | N≡CPh                       | BF₄                                                                                |  |
| 6c         | N=CPh                       | OSO <sub>2</sub> CF <sub>3</sub>                                                   |  |

Die Umsetzung von **3b** mit Fumarsäuredinitril ergibt unter analogen Reaktionsbedingungen 7:



In 7 sind zwei  $\{(\eta^5-C_5H_4SiMe_3)_2Ti(C=CSiMe_3)_2\}$ -Ag(OSO<sub>2</sub>CF<sub>3</sub>)-Einheiten über einen N=C-CH=CH-C=N-Baustein miteinander verknüpft. Der Komplex 7 weist im Vergleich zu den 1:1-Addukten von 3 und L (Verbindungen 4-6) eine 2:1-Zusammensetzung von 3b und N=C-CH=CH-C=N auf.

Während in **3a** und **3b** das Silber-Atom eine trigonal-planare Umgebung aufweist, wird durch die Addition der Lewis-Basen L in **4–7** eine pseudo-tetraedrische Anordnung um das Silber(I)-Zentrum erzeugt.

Die Verbindungen 4–7 lösen sich mit rot-brauner Farbe in THF bzw. Aceton; in unpolaren Lösungsmitteln wie *n*-Pentan und Toluol sind sie unlöslich. Während die Verbindung 4–7 im Festkörper über Monate stabil sind, zersetzen sich ihre Lösungen langsam zu nicht näher charakterisierten Produkten. Die Reinigung von 4–7 gelingt durch Waschen der braunen Rückstände mit *n*-Pentan und nachfolgender Kristallisation aus THF–*n*-Pentan bei  $-30^{\circ}$ C.

## 2.3. Diskussion

Die <sup>1</sup>H- und <sup>13</sup>C-NMR-Spektren der Verbindungen 4–7 belegen die Identität der organischen Baugruppen und weisen keine Besonderheiten auf. Durch die koordinative Bindung der Phosphane an das Silber(I)-Zentrum in **3b** erfolgt, wenngleich eine geringe, aber dennoch charakteristische Verschiebung der <sup>31</sup>P-NMR-Resonanz-Signale um 15 ppm nach tieferem Feld. Dieser Effekt steht im Einklang mit den Beobachtungen, die an anderen Kupfer(I)- bzw. Silber(I)-Phosphan-Komplexen der Form  $[(R_3P)M(\mu-X)]_2$  (M = Cu oder Ag) bzw. (R<sub>3</sub>P)CuX (X = einbindiger organischer bzw. anorganischer Rest) gemacht wurden [6–7].

Charakteristisch sind auch die IR-Spektren von 5–7: Als Resultat der koordinativen Bindung der Lewis-Base-Bausteine L (L =  $PR_2R'$  oder N=CR) an das Silber(I)-Zentrum wird eine geringe bathochrome Verschiebung der C=C-Streckschwingung von 1948 in **3a** bzw. 1956 cm<sup>-1</sup> in **3b** [2] nach 1950–1870 cm<sup>-1</sup> in 5–7 beobachtet.



Abb. 1. Molekülstruktur von **4** im Kristall [3]. Ausgewählte Bindungslängen und Winkel (Zahlen in Klammern: Standardabweichungen der letzten angegebenen Dezimalstelle): Ti-Ag(1), 309.6(2) pm; Ag(1)-O(1) 238.9(5) pm; Ag(1)-F(2), 247(2) pm; Ag(1)-C(17), 229.3(6) pm; Ag(1)-C(18), 244.7(7) pm; Ag(1)-C(22), 229.4(7) pm; Ag(1)-C(23), 247.2(8) pm; Ti-C(17), 211.4(7) pm; Ti-C(22), 212.8(7) pm; C(22)-(C23), 122.2(9) pm; C(17)-C(18), 123(1) pm; O(1)-Ag(1)-F(2), 85.4(3)°; C(22)-(Ti)-C(17), 95.6(3)°; Ti-C(17)-C(18), 170.7(6)°; Ti-C(22)-C(23), 171.0(6)°; C(17)-C(18)-Si(3), 168.8(6)°; C(22)-C(23)-Si(4), 166.8(7)°; Ti-Ag(1)-O(1), 135.8(1)°; Ti-Ag(1)-F(2), 138.7(3)°; D(1)-Ti-D(2), 134.9°. (D1, D2 = Mittelpunkte der Cyclopentadienyl-liganden.)

Der Bau der Verbindungen 4–7 wurde am Beispiel von 4 durch eine Röntgenstrukturanalyse belegt (Abb. 1 [3]). 4 kristallisiert in der orthorhombischen Raumgruppe  $P2_12_12_1$ . Aus Abb. 1 ist ersichtlich, daß beide Me<sub>3</sub>SiC=C-Bausteine des Bis(alkinyl)-Titanocen-Fragments, das THF-Molekül und der BF<sub>4</sub>-Baustein an das Silber-Atom Ag1 gebunden sind. Die Atome Ti(1), C(17), C(18), Si(3), C(22), C(23), Si(4) und Ag(1) bilden eine Ebene (maximale Abweichung, 12.8 pm), die nahezu senkrecht auf der Ag(1), C(33), C(30), O(1), F(2) und B(1)-Ebene (maximale Abweichung, 10.3 pm) steht (Interplanarwinkel, 95.8°). Der Ag(1)–O(1)- und Ag(1)–F(2)-Abstand mit 238.9(5) pm bzw. 247(2) pm liegt im Bereich der Bindungslängen, die typisch für Ag–O- und Ag–F-Abstände sind [2,8].

Durch die  $\eta^2$ -Koordination der C<sub>2</sub>-Bausteine C(17)– C(18) und C(22)–C(23) an monomeres Ag[(THF)(BF<sub>4</sub>)] findet eine geringfügige Verlängerung der C=C-Dreifachbindungen von 120.3(9)–121.4(6) pm in 1 [8] auf 123(1) pm (C(17)–C(18)) und 122.2(9) pm (C(22)– C(23)) in 4 statt. Als Resultat der  $\eta^2$ -Koordination der beiden Me<sub>3</sub>SiC=C-Liganden an den Ag[(THF)(BF<sub>4</sub>)]-Baustein in 4 sind die in 1 linearen Ti–C=C-SiEinheiten [8] in 4 abgewinkelt  $(Ti-C(17)-C(18), 170.7(6)^\circ; Ti-C(22)-C(23), 171.0(6)^\circ; C(17)-C(18)-Si(3), 168.8(6)^\circ; C(22)-C(23)-Si(4), 166.8^\circ(7)).$  Parallel dazu wird der Winkel C(17)-Ti-C(22) von 102.8(2)^\circ in 1 [8] auf 95.6(3)^\circ in 4 verkleinert, welches typisch für diese Verbindungsklasse ist (Abb. 1).

Einen ähnlichen Bau wie 4 weist  $\{(\eta^5-C_5H_4SiMe_3)_2$ -Ti $(C \equiv CSiMe_3)_2\}Ag[O_2N]$  [8] bzw.  $\{Pt^{II}(dppy)_2(\eta^2 - C \equiv CPh)[M^I(MeCN)_x]_2\}^{2+}$  (M = Cu oder Ag; x = 1 oder 2; dppy = 2-Diphenylphosphinopyridin) [9] auf. In erstgenannter Verbindung ist der Nitrit-Ligand über beide Sauerstoffatome an das Silber(I)-Zentrum gebunden; dadurch wird eine pseudo-tetraedrische Umgebung um das Silber-Atom erzeugt. In  $\{Pt^{II}(dppy)_2(\eta^2 - C \equiv CPh)[M^I(MeCN)_x]_2\}^{2+}$  wird eine derartige Anordnung durch die Liganden MeCN, PhC = C und dppy erreicht.

Die Umsetzung von  $\{(\eta^5 - C_5 H_4 SiMe_3)_2 Ti(C \equiv CSi Me_3)_2$ AgX (X = BF<sub>4</sub> (3a) oder OSO<sub>2</sub>CF<sub>3</sub> (3b)) mit Lewis-Basen L führt zu den Addukten { $(\eta^5-C_5H_4Si Me_3_2Ti(C \equiv CSiMe_3_2)Ag[(X)(L)]$  (X = BF<sub>4</sub> oder  $OSO_2CF_3$ ; L = THF (4), PR<sub>2</sub>R' (5) oder N=CR (6)). Während in 3 das Silber-Atom eine trigonal-planare Koordination zeigt, weist es in den Verbindungen 4-7 eine pseudo-tetraedrische Umgebung auf. Im Vergleich dazu reagiert der entsprechende Kupfer-Komplex { $(\eta^2 C_5H_4SiMe_3)_7Ti(C \equiv CSiMe_3)_2Cu(OSO_2CF_3)$  mit L (L = N=CMe, N=CPh oder N=C-CH=CH-C=N) unter Verdrängung des OSO<sub>2</sub>CF<sub>3</sub>-Restes zu den kationischen Komplexen  $[{\eta^5-C_5H_4SiMe_3}_2Ti(C=CSiMe_3)_2]Cu-$ (L)]<sup>+</sup>(OSO<sub>2</sub>CF<sub>3</sub>)<sup>-</sup> mit Kupfer in trigonal-planarer Umgebung [2]. Dieser Unterschied im Reaktionsverhalten kann auf die unterschiedliche Größe der Metallatome Kupfer und Silber zurückgeführt werden. Das kleinere Kupfer-Atom bevorzugt eine trigonal-planare Umgebung, während das größere Silber-Atom in der Lage ist eine Addition der Lewis-Base L unter Erhöhung der Koordinationszahl zu ermöglichen.

# 3. Experimenteller Teil

Alle Reaktionen wurden unter Inertgas (N<sub>2</sub>) in absolutierten und frisch destillierten Lösungsmitteln (THF oder Et<sub>2</sub>O, Natrium; *n*-Pentan, CaH<sub>2</sub>) durchgeführt. Das zur Chromatographie verwendete Kieselgel wurde bei 25°C und 10<sup>-2</sup> mbar entgast und mit Stickstoff beladen. Die IR-Spektren wurden an einem Perkin-Elmer Infrarotspektralphotometer (Typ 983G) aufgenommen. Die NMR-Spektren wurden in deuterierten Lösungsmitteln bei 298 K an einem Gerät der Fa. Bruker (Typ AC 200) aufgenommen: <sup>1</sup>H-NMR (200.132 MHz), Standard intern durch Lösungsmittel, CDCl<sub>3</sub>,  $\delta = 7.27$  ppm relativ SiMe<sub>4</sub>; <sup>13</sup>C-NMR (50.323 MHz), Standard intern durch Lösungsmittel, CDCl<sub>3</sub>,  $\delta = 77.0$ ppm; <sup>31</sup>P-NMR (81.015 MHz), extern relativ 85%ige H<sub>3</sub>PO<sub>4</sub> mit  $\delta = 0$  ppm. FD-Massenspektroskopie (MS): Finnigan MAT, Typ 8230. C,H,N-Elementaranalysen: C,H,N-Analysator der Fa. Heraeus. Die Schmelz- und Zersetzungspunkte wurden mit einem Schmelzpunktgerät der Fa. Gallenkamp (Typ MFB 595 010 M) bestimmt.

# 3.1. Synthese von 3a

Zu 300 mg (0.58 mmol) ( $\eta^5$ -C<sub>5</sub>H<sub>4</sub>SiMe<sub>3</sub>)<sub>2</sub>Ti(C=C-SiMe<sub>3</sub>)<sub>2</sub> (1) [10] in 50 ml Et<sub>2</sub>O werden bei 25°C 110 mg (0.58 mmol) AgBF<sub>4</sub> (2a) gegeben. Man beobachtet einen Farbwechsel von orange nach rot. Es wird 2 h bei 25°C gerührt und anschließend alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Durch Waschen des orangefarbenen Rückstandes mit 20 ml *n*-Pentan erhält man analysenreines **3a**. Ausbeute, 330 mg (85% bezogen auf eingesetztes 1).

Anal. Gef.: C, 44.33; H, 6.33.  $C_{26}H_{44}AgBF_4Si_4Ti$ (711.55) ber.: C, 43.88; H, 6.23%. Schmelzpunkt (Schmp.), 144°C (Zersetzung). IR (KBr):  $\nu$ (C=C) 1948 cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.26 (s, 18H, SiMe<sub>3</sub>); 0.29 (s, 18H, SiMe<sub>3</sub>); 6.37 (t, 4H,  $J_{HH} = 2.3$  Hz,  $C_5H_4$ ); 6.48 (t, 4H,  $J_{HH} = 2.3$  Hz,  $C_5H_4$ ) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$  0.0 (SiMe<sub>3</sub>); 0.2 (SiMe<sub>3</sub>); 117.2 (C<sub>5</sub>H<sub>4</sub>); 120.5 (C<sub>5</sub>H<sub>4</sub>); 126.8 (<sup>1</sup>C/C<sub>5</sub>H<sub>4</sub>); 127.2 (=CSiMe<sub>3</sub>); 149.3 (TiC=) ppm. FD-MS (rel. Int.): m/e M<sup>+</sup> – BF<sub>4</sub> (625 (100)); M<sup>+</sup> – AgBF<sub>4</sub> (518 (3)).

## 3.2. Synthese von 5 und 6

300 mg { $(\eta^5-C_5H_4SiMe_3)_2Ti(C\equiv CSiMe_3)_2$ }AgX (X = BF<sub>4</sub>: (3a)) (0.42 mmol) (X = OSO<sub>2</sub>CF<sub>3</sub> (3b) [2] 0.39 mmol) werden in 50 ml THF gelöst und bei 25°C mit einem zweifachen Überschuß an PR<sub>2</sub>R' (R = C≡CPh; R' = CH<sub>2</sub>Ph) (R = R' = Ph) (R = R' = OMe) bzw. N≡CR (R = Me oder Ph) versetzt. Man rührt 2 h bei 25°C. Anschließend werden alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Der Rückstand wird dreimal mit jeweils 30 ml *n*-Pentan gewaschen. Die Komplexe 5 (L = PR<sub>2</sub>R') und 6 (L = N≡CR) werden als rote (5a, 6a und 6c) bis braune (5b, 5c und 6b) Feststoffe erhalten.

**5a**: Ausbeute, 410 mg, 0.37 mmol (96% bezogen auf eingesetztes **3b**). Anal. Gef.: C, 54.43; H, 5.35. C<sub>50</sub>H<sub>61</sub>AgF<sub>3</sub>O<sub>3</sub>PSSi<sub>4</sub>Ti (1098.14) ber.: C, 54.68; H, 5.60%. Schmp., 59°C (Zersetzung). IR (KBr): ν(C≡C) 1869 w, 2168 s cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 0.26 (s, 18H, SiMe<sub>3</sub>); 0.31 (s, 18H, SiMe<sub>3</sub>); 3.65 (s, 2H, CH<sub>2</sub>); 6.39 (t, 4H, J<sub>HH</sub> = 2.3 Hz, C<sub>5</sub>H<sub>4</sub>); 6.50 (t, 4H, J<sub>HH</sub> = 2.3 Hz, C<sub>5</sub>H<sub>4</sub>); 7.3–7.5 (m, 15H, C<sub>6</sub>H<sub>5</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>): δ -0.1 (SiMe<sub>3</sub>); 0.6 (SiMe<sub>3</sub>); 37.6 (d, J<sub>PC</sub> = 18.0 Hz, CH<sub>2</sub>); 79.1 (PC≡C); 108.8 (d, J<sub>PC</sub> = 13.6 Hz, PC≡C); 117.6 (C<sub>5</sub>H<sub>4</sub>); 121.3 (C<sub>5</sub>H<sub>4</sub>); 127.7 (<sup>i</sup>C/C<sub>5</sub>H<sub>4</sub>); 120.6, 120.9, 127.0, 128.5, 129.8, 130.3, 132.0, 133.3, 144.9 (C<sub>6</sub>H<sub>5</sub>, ≡CSiMe<sub>3</sub>); 151.9 (TiC≡) ppm. <sup>31</sup>P{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>): δ -49.1 (s, 1P) ppm.

FD-MS (rel. Int.):  $m/e M^+ - SO_3CF_3$  (949 (4)),  $M^+ - SO_3CF_3 - SiMe_3$  (876 (100)).

**5b**: Ausbeute, 390 mg, 0.38 mmol (97% bezogen auf eingesetztes **3b**). Anal. Gef.: C, 52.43; H, 5.59. C<sub>45</sub>H<sub>59</sub>AgF<sub>3</sub>O<sub>3</sub>PSSi<sub>4</sub>Ti (1036.07) ber.: C, 52.16; H, 5.74%. Schmp., 75°C (Zersetzung). IR (KBr): ν(C≡C) 1952 cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ -0.03 (s, 18H, SiMe<sub>3</sub>); 0.25 (s, 18H, SiMe<sub>3</sub>); 6.51 (s, 4H, C<sub>5</sub>H<sub>4</sub>); 6.62 (s, 4H, C<sub>5</sub>H<sub>4</sub>); 7.3-7.5 (m, 15H, C<sub>6</sub>H<sub>5</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>): δ 0.2 (SiMe<sub>3</sub>); 117.5 (C<sub>5</sub>H<sub>4</sub>); 121.5 (C<sub>5</sub>H<sub>4</sub>); 126.8 (<sup>i</sup>C/C<sub>5</sub>H<sub>4</sub>); 129.2 (d, J<sub>PC</sub> = 10.3 Hz, C<sub>6</sub>H<sub>5</sub>); 131.0, 133.5, 133.8, 145.8 (C<sub>6</sub>H<sub>5</sub>, ≡CSiMe<sub>3</sub>); 154.2 (TiC≡) ppm. <sup>31</sup>P{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>): δ 9.4 (s, 1P) ppm. FD-MS (rel. Int.): *m/e* M<sup>+</sup> - SO<sub>3</sub>CF<sub>3</sub> (887 (18)), M<sup>+</sup> - SO<sub>3</sub>CF<sub>3</sub> - PPh<sub>3</sub> (625 (100)).

**5c**: Ausbeute, 340 mg, 0.38 mmol (97% bezogen auf eingesetztes **3b**). Anal. Gef.: C, 41.51; H, 6.07. C<sub>30</sub>H<sub>53</sub>AgF<sub>3</sub>O<sub>6</sub>PSSi<sub>4</sub>Ti (897.87) ber.: C, 40.13; H, 5.95%. Schmp., 111°C (Zersetzung). IR (KBr):  $\nu$ (C=C) 1939 cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.25 (s, 18H, SiMe<sub>3</sub>); 0.31 (s, 18H, SiMe<sub>3</sub>); 3.77 (d, 9H, J<sub>PH</sub> = 12.4 Hz, OCH<sub>3</sub>); 6.35 (t, 4H, J<sub>HH</sub> = 2.2 Hz, C<sub>5</sub>H<sub>4</sub>); 6.44 (t, 4H, J<sub>HH</sub> = 2.2 Hz, C<sub>5</sub>H<sub>4</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$ -0.1 (SiMe<sub>3</sub>); 0.3 (SiMe<sub>3</sub>); 51.9 (OCH<sub>3</sub>); 117.3 (C<sub>5</sub>H<sub>4</sub>); 120.4 (C<sub>5</sub>H<sub>4</sub>); 126.6 (<sup>i</sup>C/C<sub>5</sub>H<sub>4</sub>); 142.7 (=CSiMe<sub>3</sub>); 154.1 (TiC=) ppm. <sup>31</sup>P{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$  124.3 (s, 1P). FD-MS (rel. Int.): *m/e* M<sup>+</sup> - SO<sub>3</sub>CF<sub>3</sub> (749 (100)), M<sup>+</sup> - SO<sub>3</sub>CF<sub>3</sub> - P(OCH<sub>3</sub>)<sub>3</sub> (625 (5)).

**6a**: Ausbeute, 300 mg, 0.40 mmol (95% bezogen auf eingesetztes **3a**). Anal. Gef.: C, 44.60; H, 5.89%. C<sub>28</sub>H<sub>47</sub>AgBF<sub>4</sub>NSi<sub>4</sub>Ti (752.59) ber.: C, 44.68; H, 6.30%. Schmp., 112°C (Zersetzung). IR (KBr): ν(C≡C) 1948 m; ν(C≡N) 2269 w cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>): δ 0.19 (s, 18H, SiMe<sub>3</sub>); 0.23 (s, 18H, SiMe<sub>3</sub>); 2.35 (s, 3H, CH<sub>3</sub>); 6.38 (t, 4H, J<sub>HH</sub> = 2.1 Hz, C<sub>5</sub>H<sub>4</sub>); 6.48 (t, 4H, J<sub>HH</sub> = 2.1 Hz, C<sub>5</sub>H<sub>4</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>): δ - 0.2 (SiMe<sub>3</sub>); 0.3 (SiMe<sub>3</sub>); 2.0 (CH<sub>3</sub>); 117.3 (C<sub>5</sub>H<sub>4</sub>); 120.4 (C<sub>5</sub>H<sub>4</sub>); 121.7 (CN); 127.4 (<sup>1</sup>C/C<sub>5</sub>H<sub>4</sub>); 139.9 (≡CSiMe<sub>3</sub>); 150.4 (TiC≡) ppm. FD-MS: *m/e* M<sup>+</sup>− BF<sub>4</sub> − CH<sub>3</sub>CN (625).

**6b**: Ausbeute, 330 mg, 0.41 mmol (96% bezogen auf eingesetztes **3a**). Anal. Gef.: C, 49.08; H, 7.16.  $C_{33}H_{49}AgBF_4NSi_4Ti$  (814.67) ber.: C, 48.65; H, 6.06%. Schmp., 81°C (Zersetzung). IR (KBr):  $\nu$ (C=C) 1946 vw;  $\nu$ (C=N) 2257 w cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.23 (s, 18H, SiMe<sub>3</sub>); 0.30 (s, 18H, SiMe<sub>3</sub>); 6.4–6.6 (m, 8H,  $C_5H_4$ ); 7.5–7.9 (m, 5H, C<sub>6</sub>H<sub>5</sub>) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$  –0.1 (SiMe<sub>3</sub>); 0.4 (SiMe<sub>3</sub>); 110.8 (C<sub>6</sub>H<sub>5</sub>); 117.6 (C<sub>5</sub>H<sub>4</sub>); 120.7 (C<sub>5</sub>H<sub>4</sub>); 122.8, 127.3, 129.5, 132.6, 133.9, 134.2 (<sup>1</sup>C/C<sub>5</sub>H<sub>4</sub>, CN, C<sub>6</sub>H<sub>5</sub>, =CSiMe<sub>3</sub>); 150.7 (TiC=) ppm.

**6c**: Ausbeute, 330 mg, 0.38 mmol (96% bezogen auf eingesetztes **3b**). Anal. Gef.: C, 46.54; H, 5.56.  $C_{34}H_{49}AgF_3NO_3SSi_4Ti$  (876.92) ber.: C, 46.57; H, 5.63%. Schmp., 128°C (Zersetzung). IR (KBr):  $\nu$ (C=C)

1951 vw;  $\nu(C=N)$  2250 vw cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.23 (s, 18H, SiMe<sub>3</sub>); 0.28 (s, 18H, SiMe<sub>3</sub>); 6.38 (t, 4H,  $J_{HH} = 2.3$  Hz,  $C_5H_4$ ); 6.50 (t, 4H,  $J_{HH} = 2.3$  Hz,  $C_5H_4$ ); 7.5–7.7 (m, 5H,  $C_6H_5$ ) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$  –0.1 (SiMe<sub>3</sub>); 0.3 (SiMe<sub>3</sub>); 111.2 ( $C_6H_5$ ); 117.1 ( $C_5H_4$ ); 120.0 (CN); 120.4 ( $C_5H_4$ ); 126.8, 129.3, 132.2, 133.5, 141.9 (<sup>1</sup>C/C<sub>5</sub>H<sub>4</sub>,  $C_6H_5$ , =CSiMe<sub>3</sub>); 150.2 (TiC=) ppm. FD-MS: m/e M<sup>+</sup> – SO<sub>3</sub>CF<sub>3</sub> –  $C_6H_5$ CN (625).

#### 3.3. Synthese von 7

Zu 300 mg (0.39 mmol) { $(\eta^5-C_5H_4SiMe_3)_2Ti(C\equiv C-SiMe_3)_2$ Ag[OSO<sub>2</sub>CF<sub>3</sub>] (**3b**) [2] in 50 ml THF werden bei 25°C 60 mg (0.77 mmol) N $\equiv$ C-HC=CH-C $\equiv$ N gegeben. Man beobachtet einen Farbwechsel von rot nach braun. Es wird 2 h bei 25°C gerührt und anschließend alle flüchtigen Bestandteile im Ölpumpenvakuum entfernt. Durch dreimaliges Waschen des Rückstandes mit jeweils 20 ml *n*-Pentan erhält man 7 als braunes Pulver. Ausbeute, 300 mg, 0.18 mmol (96% bezogen auf eingesetztes **3b**).

Anal. Gef.: C, 43.25; H, 5.28.  $C_{58}H_{90}Ag_2F_6N_2O_6S_2$ -Si<sub>8</sub>Ti<sub>2</sub> (1625.68) ber.: C, 42.85; H, 5.58%. Schmp., 102°C (Zersetzung). IR (KBr):  $\nu$ (C=C) 1948 w;  $\nu$ (C=N) 2251 vw cm<sup>-1</sup>. <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  0.26 (s, 36H, SiMe<sub>3</sub>); 0.31 (s, 36H, SiMe<sub>3</sub>); 6.31 (s, 2H, =CH); 6.34 (t, 8H,  $J_{HH} = 2.3$  Hz,  $C_5H_4$ ); 6.45 (t, 8H,  $J_{HH} =$ 2.3 Hz,  $C_5H_4$ ) ppm. <sup>13</sup>C{<sup>1</sup>H}-NMR (CDCl<sub>3</sub>):  $\delta$  -0.1 (SiMe<sub>3</sub>); 0.2 (SiMe<sub>3</sub>); 117.1 ( $C_5H_4$ ); 120.5 ( $C_5H_4$ ); 126.7 ( $^{1}C/C_5H_4$ ); 119.6, 120.0, 142.7 (CN, C=C, =CSiMe<sub>3</sub>); 150.0 (TiC=) ppm. FD-MS: m/e M<sup>+</sup>-SO<sub>3</sub>CF<sub>3</sub> -  $C_4H_2N_2$  (1399).

#### Dank

Wir danken der Deutschen Forschungsgemeinschaft, der Hermann-Schlosser-Stiftung/Degussa AG Frankfurt (K.K.), dem Fonds der Chemischen Industrie und Herrn Professor Dr. G. Huttner für die finanzielle Unterstützung dieser Arbeit.

#### Literatur und Bemerkungen

- M.D. Janssen, K. Köhler, M. Herres, A. Dedieu, A.L. Spek, D.M. Grove, H. Lang und G. van Koten, J. Am. Chem. Soc., eingereicht.
- [2] M.D. Janssen, M. Herres, L. Zsolnai, A.L. Spek, D.M. Grove, H. Lang und G. van Koten, *Inorg. Chem.*, eingereicht.
- [3] Kristallstrukturdaten von 4;  $C_{30}H_{52}AgBF_4OSi_4Ti$ ; 783.66. Einkristalle von 4 wurden durch Abkühlen einer THF-*n*-Pentan-Lösung auf  $-30^{\circ}$ C erhalten. Dimension des vermessenen Kristalls:  $0.3 \times 0.3 \times 0.2$  mm. 4 kristallisiert in der orthorhombischen Raumgruppe  $P2_12_12_1$ ; a = 1072.9(5), b = 1558.5(6), c = 2325.8(9) pm;  $V = 3889.0 \times 10^{6}$  pm<sup>3</sup>; Z = 4.

Mit einem automatisierten Vierkreisdiffraktometer R3m/V der Firma Siemens (Nicolet) wurden bei 200 K im Bereich 3.1°  $\leq 2\theta \leq 43.1^{\circ}$ , 2341 Reflexe  $(I \geq 2\sigma(I))$  gemessen ( $\mu$ Mo K $\alpha$ ) = 1.8 mm<sup>-1</sup>); Graphitmonochromator,  $\lambda = 71.069$  pm;  $\omega$ -Scan mit  $\Delta \omega = 0.75^{\circ}$  und 3.1° min<sup>-1</sup>  $\leq \dot{\omega} \leq 29.3^{\circ}$  min<sup>-1</sup>;  $d_{ber} = 1.34$  g cm<sup>-3</sup>. (Korrekturen, Lorentz- und Polarisationsfaktor, Exp. Absorptionskorrektur;  $\psi$ -scan,  $\Delta \psi = 10^{\circ}$ ). Lösungsmethode: Direkte Methoden, Methode der kleinsten Fehlerquadratesumme (Programmsystem SHELXTL PLUS [4]). Die Verfeinerung konvergiert auf der Basis von 2341 unabhängigen Reflexen ( $I \geq 2\sigma(I)$ ) zu  $R_1 = 0.031$  und  $R_w = 0.081$  ( $F^2$ -Verfeinerung) [5]. Flack-Parameter, -0.046(4). Verfeinerte Parameter, 521; Restelektronendichte,  $0.45 \times 10^{-6}$  electrons/pm<sup>3</sup>.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58733, der Autorennamen und des Zeitschriftenzitats angefordert werden.

- [4] G.M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, Göttingen, 1988.
- [5] G.M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen, Göttingen, 1993.
- [6] M. Winter, Diplomarbeit Universität, Heidelberg, 1993.
- [7] (a) K. Osakada, T. Takizawa, M. Tanaka und T. Yamamoto, J. Organomet. Chem., 473 (1994) 359; (b) P. Strauch, B. Dempe, R. Kempe, W. Dietzsch und E. Hoyer, Z. anorg. allg. Chem., 620 (1994) 498; (c) P.S. Coan, K. Folting, J.C. Huffman und K.G. Caulton, Organometallics, 8 (1989) 2724; (d) R. Uson, A. Laguna, A. Uson, P.G. Jones und K. Meyer-Base, J. Chem. Soc., Dalton Trans., (1988) 341; (e) S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa und C. Guastini, Organometallics, 3 (1984) 1444.
- [8] H. Lang, M. Herres und L. Zsolnai, Organometallics, 12 (1993) 5008.
- [9] V.W.W. Yam, L.P. Chan und T.F. Lai, J. Chem. Soc., Dalton Trans., (1993) 2075, und dort zitierte Literatur.
- [10] H. Lang und D. Seyferth, Z. Naturforsch., 45b (1990) 212.